
24

Detailed Developer guide

This section provides some more details on BIAFLOWS workflows and details how

to compile and debug BIAFLOWS workflows Docker image locally and add them to

an existing BIAFLOWS instance.

Details on Python wrapper script and JSON descriptor

The sequence of operations commonly performed by BIAFLOWS Python wrapper scripts is

detailed in Table S4.1. All workflows provided in BIAFLOWS repository follow this template.

A complete reference to BIAFLOWS workflows JSON descriptor can be found online.

Figure S4.1. Typical steps of a BIAFLOWS Python wrapper script

Installing software required for development (only once)

As workflows run inside a Docker container and since their Python wrapper script interacts

with a BIAFLOWS instance, it is required to install Docker and Python 3 on your local

machine. Our Python client is also required for development.

Docker installation instructions can be found here:

For Linux:

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

https://doc.uliege.cytomine.org/display/ALGODOC/Software+JSON+descriptor+reference
https://doc.uliege.cytomine.org/display/ALGODOC/Software+JSON+descriptor+reference
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

25

For Windows:

https://docs.docker.com/docker-for-windows/install/#install-docker-for-windows-desktop-app

Python 3 and Cytomine Python client instructions can be found here:

See https://doc.uliege.cytomine.org/display/ALGODOC/Data+access+using+Python+client

In the following steps, we will use the workflow “NucleiSegmentation-ImageJ” as reference:

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ

Step 1. Uploading a new workflow descriptor to BIAFLOWS

Workflows have first to be described through a JSON descriptor, e.g.:

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/descriptor.json

Currently, some sections have to be customized manually, and some conventions must be

respected to allow automatic parsing by BIAFLOWS. We recommend using

https://github.com/Neubias-WG5/W_Template/blob/master/descriptor.json as template for

your JSON descriptor.

Choose a workflow name without space. The description field (supporting restricted HTML)

should be filled to document the workflow and it will be displayed from BIAFLOWS UI.

As inputs (workflow parameters), the five parameters (cytomine_host, cytomine_public_key,

cytomine_private_key, cytomine_id_project, cytomine_id_software) are mandatory.

The workflow parameters should also be described:

- id: the parameter name (e.g : “ij_radius”)

- value-key: a reference for the parameter in the command line. Keep “@ID”, which is

a shorthand meaning “replace by the parameter id, in uppercase”. In our example, it

will be replaced at parsing time by “IJ_RADIUS”

- command-line-flag: At execution time, the value-key in the command line will be

replaced by the command-line-flag followed by the parameter value. Keep “--@id”.

In our example, it will be replaced in the command line by “--ij_radius”.

- name: a human readable name displayed in BIAFLOWS

- type: Number, String, Boolean

- optional: set to true only if the workflow execution is not influenced by the presence

or the absence of the parameter (e.g a “verbose” parameter). Workflow parameters

having an influence on the results should never be optional.

- default-value: the default value of the parameter (in BIAFLOWS interface).

Do not forget to update the command line, with the parameter value keys. For instance, for

workflow parameters ij_radius and ij_threshold:

https://docs.docker.com/docker-for-windows/install/#install-docker-for-windows-desktop-app
https://doc.uliege.cytomine.org/display/ALGODOC/Data+access+using+Python+client
https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ
https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/descriptor.json
https://github.com/Neubias-WG5/W_Template/blob/master/descriptor.json

26

python wrapper.py CYTOMINE_HOST CYTOMINE_PUBLIC_KEY CYTOMINE_PRIVATE_KEY

CYTOMINE_ID_PROJECT CYTOMINE_ID_SOFTWARE IJ_RADIUS IJ_THRESHOLD

To make a workflow available from a BIAFLOWS instance, it is currently required to publish

its descriptor using Cytomine Python client. This can be performed by running the following

Python code inside the folder holding the JSON descriptor you have created:

from cytomine import Cytomine

from cytomine.utilities.descriptor_reader import read_descriptor

with Cytomine(host, public_key, private_key) as c:

 read_descriptor("descriptor.json")

host is the url of your BIAFLOWS server, e.g. https://biaflows.neubias.org

public_key and private_key can be found from user Account page (section API KEYS)

Step 2. Linking a new workflow to a BIAFLOWS project

- From Problems, select the problem to which you want to add the workflow

- Go to Problems > Configuration > Workflows and enable the workflow

For now, as the workflow has been added manually, it will be referenced as Not Runnable

and no version information will be provided from the UI.

Next, Go to Projects > Configuration and make sure that Jobs tab is activated (green)

https://biaflows.neubias.org/

27

Step 3. Creating the Dockerfile

Docker files specify the execution environment. They typically start by creating (FROM) a

layer from an existing Docker image with basic operating system. Then they execute

commands (RUN) to install specific software and libraries, and copy (ADD) files (e.g. the

Python wrapper script and workflow script) into the execution environment the workflow will

be called from. Finally, the ENTRYPOINT is set to the wrapper script.

A sample DockerFile is available here:

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/Dockerfile

If you do not know how to configure the Dockerfile, it is recommended to adapt the

Dockerfile from an existing BIAFLOWS workflow using the same target software (e.g. an

ImageJ macro).

Note: If you create a Dockerfile from scratch, always use the most accurate tag when

referring to an existing Docker image (e.g. prefer python:3.6.9-stretch over python:3.6). If

the tag is not accurate, the underlying docker image could change over time, heavily

impairing reproducibility!

Step 4. Creating the wrapper script

It is recommended to adapt a wrapper script: 1) from same problem class, 2) processing

image of same dimensionality (e.g. 3D), and 3) matching the software you are planning to

use (e.g. ImageJ macro). In this case, only the workflow call (command line) needs to be

adapted. A sample wrapper script is available here:

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/wrapper.py

Note: The flag is_2d should be used to specify if the images are strictly 2d or
multidimensional.

Step 5. Building the workflow image, running it in a local container and debugging

A new workflow can be directly pushed to GitHub and be built in DockerHub, but it is

preferable to test it locally beforehand. For this, it is required to build and run the Docker

image locally:

Building the container (you need at least around 5GB disk space for this operation)

From a directory where you gathered the 4 files required to describe the workflow:

cd ~/Documents/Code/NEUBIAS/W_NucleiSegmentation-ImageJ$

sudo docker build -t seg2d .

Here seg2d is the name of the Docker image to build locally.

https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/Dockerfile
https://github.com/Neubias-WG5/W_NucleiSegmentation-ImageJ/blob/master/wrapper.py

28

Running the Docker image:

sudo docker run -it seg2d --host host --public_key public_key --

private_key private_key --software_id software_id --project_id project_id

--ij_threshold 15 --ij_radius 4

The list of command-line parameters should exactly match the parameters defined in the

JSON descriptor file. BIAFLOWS instance URL and credentials should also be filled, as

well as valid workflow_id (using --software_id) and problem_id (using --projet_id).

These IDs can be retrieved from the URL bar while respectively clicking on a problem (from

BIAFLOWS Problems tab) and on a workflow (from BIAFLOWS Workflows tab):

In this example, workflow_id=23771763 and problem_id=5955.

If a workflow fails at execution this is reported in Workflow runs section. Some Execution

log can be downloaded by expanding a workflow run from the blue arrow:

In that case, no associated benchmark metric is associated to this run. There is hence no

risk that this would be left unnoticed by the user. For debugging, Docker can be run with an

interactive session:

sudo docker run --entrypoint bash -it seg2d

If needed, it is also possible to launch the Docker with X enabled, e.g. to debug imageJ

macro more easily:

xhost + sudo docker run --entrypoint bash -v

/home/yourusername/tmp/test:/data -e DISPLAY=$DISPLAY -v /tmp/.X11-

unix:/tmp/.X11-unix -it seg2d

If you want to access local images without having to download them each time from

BIAFLOWS, you can also attach a local folder to a folder inside the Docker container (-v

option), for instance:

29

sudo docker run --entrypoint bash -v /home/yourusername/tmp/test:/data -

it seg2d

Some other useful Docker commands

Check if an image is running: ps -a

Kill a running container: sudo docker rm 65e88b2015df

Kill all running containers: sudo docker rm $(sudo docker ps -a -q)

Download a specific container sudo docker pull neubiaswg5/fiji-base:latest

Note: To download a recently updated workflow image, it is necessary to first remove older

versions manually.

Step 6. Publishing a workflow with version control

Once your workflow is running properly, you can officially publish it with version control.

To allow automatic import to BIAFLOWS, the set of files previously described should be

stored in a GitHub repository (linked to DockerHub) from an account trusted by the target

BIAFLOWS instance.

The Github repository name must be given by:

 Github repo name = {prefix}{workflow_name}

where

- {prefix} is an optional prefix for the trusted source (see Installing and

populating BIAFLOWS locally)

- {workflow_name} is the name of the workflow as given in the “name” field in the

JSON descriptor (see Step 1).

For instance, for a trusted source with a prefix W_: W_NucleiSegmentation-ImageJ.

Adding/editing trusted sources is performed from Admin / Trusted sources (Installing and

populating BIAFLOWS locally):

Step 7. Linking a GitHub repository to DockerHub (only once)

We assume that you created a trusted GitHub organization (e.g. neubias-wg5) and a

workflow repository holding the 4 workflows files. It is now required to link DockerHub to

30

GitHub. Fortunately, this operation has to be performed only once for a given GitHub

organization:

1. Create an account on DockerHub : https://hub.docker.com/ and login

2. Create an automatic build by linking Docker account to GitHub organization account

3. In DockerHub website, click on Create > Create Automated Build

4. In Linked Accounts, click on Link Github

5. Click Select

6. Ensure that Organization access (e.g. Neubias-WG5) is selected (green check

mark) and click on Authorize docker

7. Enter your GitHub password to enable access

Step 8. Associating a new workflow repository to DockerHub

Once your Github organization account and DockerHub are linked, it is possible to create

an automated build procedure for each workflow. This procedure will build a workflow

Docker image each time a new release is triggered from a GitHub workflow repository. This

image is automatically downloaded by the BIAFLOWS instance and the new workflow

version will be available for the target problem.

To do so, from DockerHub:

1. Click on Create > Create Repository+

2. In build settings click on GitHub icon

3. Select organization (e.g. neubiaswg5) and workflow Github repository (e.g.

W_NucleiSegmentation-ImageJ) at the bottom of the page

4. Choose the Docker registry repository name. In practice, keep the same as Github

repository (DockerHub will convert uppercase letters into lowercase).

5. Enter a short description (less than 100 characters) and click Create

https://hub.docker.com/

31

6. Click on Click here to customize the build settings and configure as in figure below

7. Click on Save

The DockerHub repository name must be reflected in the JSON descriptor:

image = {dockerhub_organization}/{github_repo_name.toLowerCase()}

For example, in the JSON descriptor:

container-image:

{

 image: "neubiaswg5/w_nucleisegmentation-imagej",

 type: "singularity"

},

Step 9. Creating a versioned release on GitHub

To create versioned releases of the workflow, go to GitHub and draft a new release (see

https://goo.gl/bFz66N). This will add a new tag to the last commit. As we configured

automatic build in previous step, a new Docker image will be built and published with the

same tag. BIAFLOWS instances trusting this GitHub / DockerHub repository will now

automatically fetch and make this new version available from the UI (possibly after up to

5/10 minutes).

https://goo.gl/bFz66N

